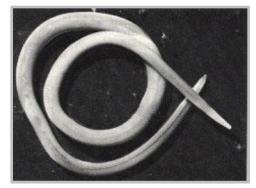
ЦИТОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ДИМИНУЦИИ ХРОМАТИНА У НЕКОТОРЫХ ВИДОВ ПОДОТРЯДА Cyclopoida

Алексеева Анастасия Леонидовна


Научный руководитель: академик РАН, д.б.н. И.Ф. Жимулев

Лаборатория молекулярной цитогенетики ОМКБ ИХБФМ СО РАН

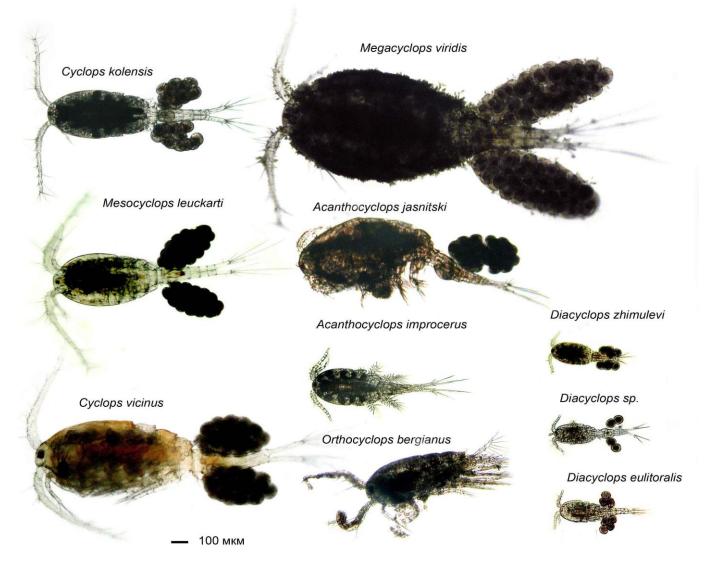
Распространенность диминуции хроматина

Stylonychia mytilus

Ascaris suum

Cyclops kolensis

Miastor metraloas



Eptatretus okinoseanus

Dicyrtomina ornata

Диминуция хроматина у циклопов

Цель и задачи работы

Целью дипломной работы являлось определение наличия или отсутствия диминуции хроматина у некоторых видов подотряда Cyclopoida, а также определение содержания ДНК в гаплоидном геноме этих видов до и после диминуции хроматина.

- Отработка модифицированного метода оценки количества ДНК в ядрах, окрашенных по Фёльгену, с применением цифровой фотокамеры, на клетках (мазках) крови стандартных объектов, для которых содержание ДНК в гаплоидном геноме хорошо известно.
- Определение количества ДНК в геномах двух наиболее изученных видов циклопов: Cyclops kolensis и Cyclops insignis, с использованием окрашивания по Фёльгену ядер ранних эмбриональных клеток (на стадии от 1 до 16 клеток), поздних эмбриональных клеток (от 128 клеток) и ядер клеток соматических тканей (постдиминуционные ядра) исследуемых видов циклопов с применением разработанного метода.
- Выяснение наличия или отсутствия диминуции хроматина у ранее неизученных видов подотряда Cyclopoida и оценка абсолютных значений размеров их геномов до и после диминуции хроматина на основании полученных данных.

Сбор биологического материала

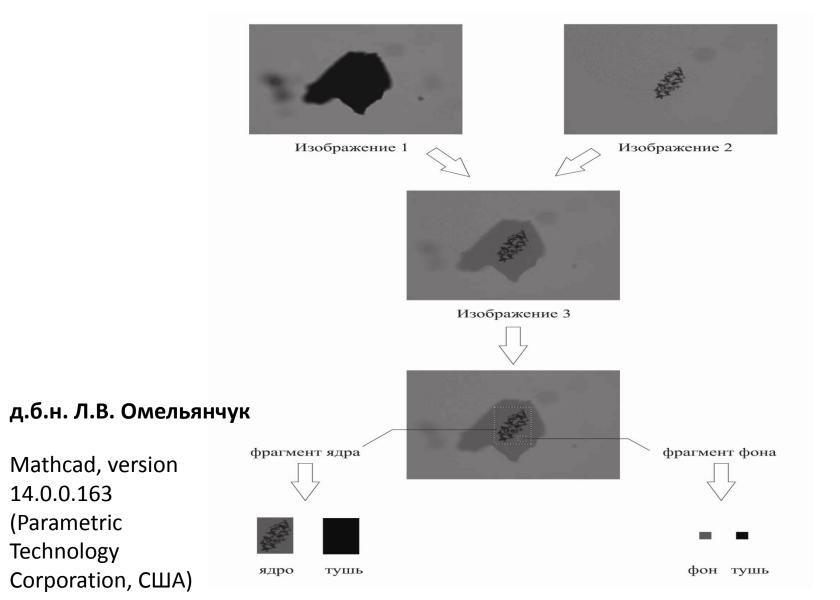
Апрель 2009-2010 гг. Марьинский пруд на

Воробьевых горах, г. Москва

Август 2009-2010 гг. озеро Байкал (вблизи

стационара

Март 2010 г. Лимнологического института

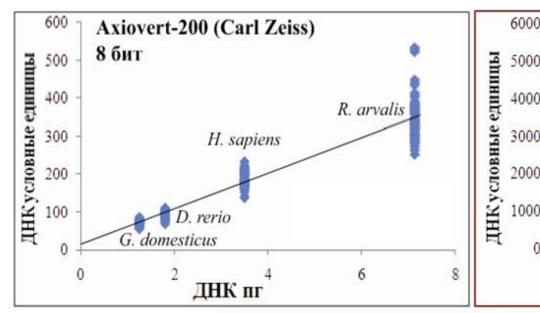

СО РАН, п. Большие Коты)

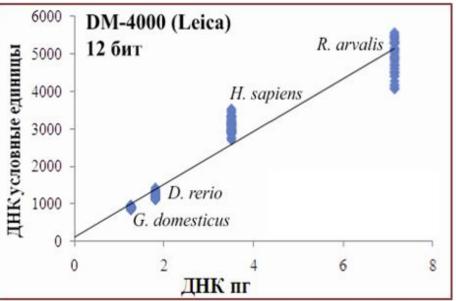
Декабрь 2009 г. искусственный водоем ИЦГ

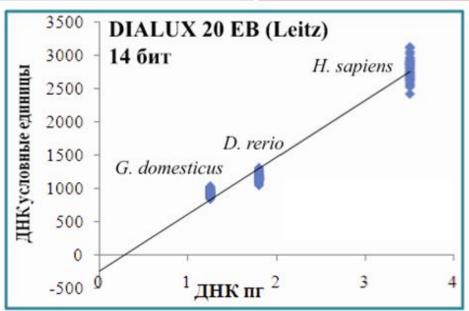
СО РАН, г. Новосибирск

Определение видов циклопов – с.н.с. ЛИН СО РАН Шевелёва Н.Г.

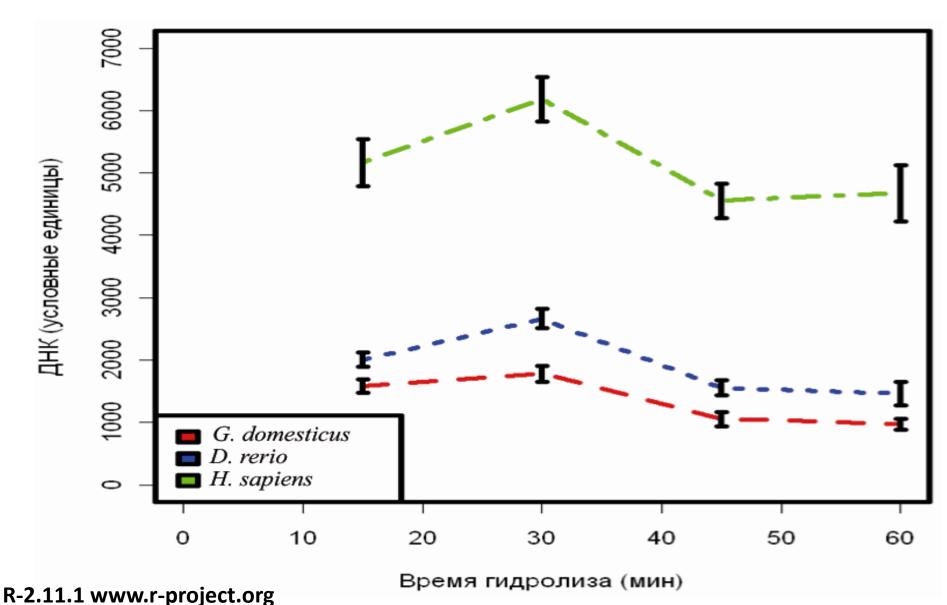
Схема получения изображений в экспериментах по оценке количества ДНК в ядрах, окрашенных по Фёльгену, с применением метода цифровой микрофотографии

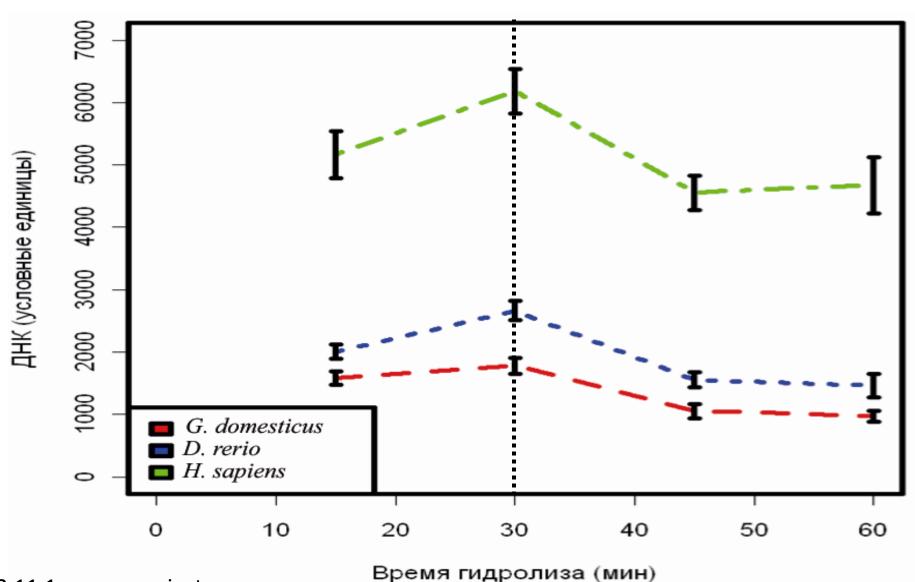


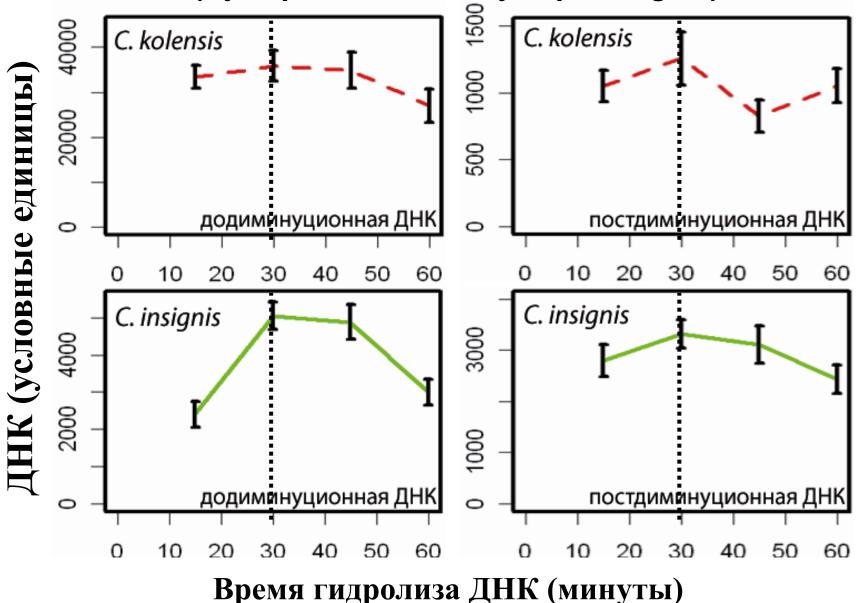

Контрольные объекты


Вид	ДНК, пг	Тип клеток
Danio rerio	1.68-1.80	Эритроциты
Homo sapiens	3.50	Лейкоциты
Rana arvalis	4.65-7.17	Эритроциты
Gallus domesticus	1.25	Эритроциты

Содержание ДНК в гаплоидном геноме (1С) согласно базе данных Animal Genome Size Database (http://www.genomesize.com).


Калибровочные графики для контрольных объектов




Кривые зависимости содержания связанного с клеточным ядром красителя Фельгена от времени гидролиза ДНК (контрольные объекты)

Кривые зависимости содержания связанного с клеточным ядром красителя Фельгена от времени гидролиза ДНК (контрольные объекты)

Кривые зависимости содержания связанного с клеточным ядром красителя Фельгена от времени гидролиза ДНК (Cyclops kolensis и Cyclops insignis)

Количество ДНК в клетках *Cyclops kolensis* и *Cyclops insignis* до и после диминуции хроматина (пг)

	Додиминуционное развитие		Постдиминуционное		Элимини		
Вид циклопа				разви	тие	руемая	
(популяция)	Анафаза, 2С	Метафаза, 4С	Направитель-	Поздние	Ноги,	днк, %	
			ные тельца,	эмбрионы, 2С	имаго, 2С		
			1C				
C. kolensis	39,9	80.8	21,2	д.о.	1,82	95,4-95,7	
(московская поп.)	σ=3,5 n=28	n=1	σ=1,27 n=23		σ=0,24 n=18		
C. kolensis	41,5	84,8	д.о.	д.о.	1,98	95,2-95,3	
(московская поп.)	σ=3,6 n=69	σ=8,3 n=44			σ=0,18 n=14		
C. kolensis	40,6	80,9	20,6	1,6	1,77	95,6-96,1	
(московская поп.)	σ=3,6 n=38	σ=6,9 n=177	σ=2,8 n=28	σ=0,12 n=13	σ=0,17 n=38		
C. kolensis	40,7	85,6	д.о.	1,66	1,52	96,1-96,4	
(байкальская поп.)	σ=3,4 n=3	σ=10,8 n=49		σ=0,36 n=24	σ=0,28 n=50		
C. kolensis	д.о.	106,5	18,9	2,02	2,08	96,2	
(байкальская поп.)		σ=15,1 n=8	σ=4,0 n=7	σ=0,45 n=43	σ=0,43 n=50		
C. insignis	7,5	14,9	3,7	Анафаза	6,81	0,9-8,0	
(московская поп.)	σ=0,46 n=51	σ=1,04 n=120	σ=0,44 n=19	7,4	σ=0,36 n=74		
				σ=0,34 n=30			
				Метафаза			
				14,2			
				ĺ			
				σ=1,0 n=50			

Количество ДНК в клетках *Cyclops kolensis* московской популяции до и после диминуции хроматина

Дата (авторы) Кол-во ДНК (1С, пг)	2011 г. (наши данные)	1996 г. (А.К. Гришанин)	2010 г. (А.К. Гришанин, М. В. Загоскин)
ДО диминуции хроматина	20,49 ±1,89	2,3 ±0,05	15,3 ±3,1
ПОСЛЕ диминуции хроматина	0,90 ±0,11	0,14 ±0,02	0,98 ±0,13

Количество ДНК в клетках *Cyclops kolensis* байкальской популяции до и после диминуции хроматина

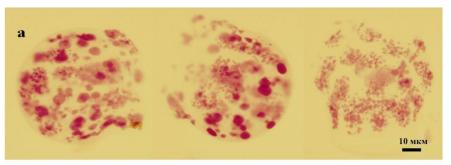
Дата (авторы) Кол-во ДНК (1С, пг)	2011 г. (наши данные)	2006 г. (А.К. Гришанин)
ДО диминуции хроматина	18,93 ±4,02 – 26,63 ±3,77	2,3 ±0,04
ПОСЛЕ диминуции хроматина	1,03 ±0,22	0,085 ±0,002

Количество ДНК в геноме вида Cyclops insignis

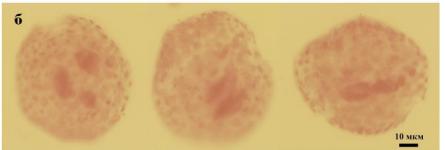
Дата (авторы) Кол-во ДНК (1С, пг)	2011 г. (наши данные)	2008 г. (А.К. Гришанин)
ДО и ПОСЛЕ диминуции хроматина	3,62 ±0,27	2,10 ±0,04 - 2,15 ±0,05

Количество ДНК в ядрах клеток ранее неизученных видов циклопов (пг)

Вид циклопа (популяция)	Додиминуцио	нное развитие	Постдиминуци	3.04444444	
	Анафаза, 2С	Метафаза, 4С	Поздние эмбрионы, 2С	Ноги, имаго, 2С	Элиминируе мая ДНК, %
M. leuckarti (байкальская поп.)	2,25 σ = 0,37 n = 20	3,9 σ = 0,46 n = 8	1,94 σ = 0,34 n = 21	1,68 σ = 0,31 n = 32	Не обнаружена
A. vernalis (новосибирская поп.)	д.о.	д.о.	1,92 σ = 0,44 n = 39	д.о.	д.о.
E. serrulatus baicalocorrepus (байкальская поп.)	д.о.	д.о.	3,8 σ = 1,06 n = 8	3,36 σ = 0,28 n = 50	д.о.
D. eulitoralis (байкальская поп.)	д.о.	д.о.	1,8 σ = 0,56 n = 8	1,47 σ = 0,57 n = 5	д.о.
A. konstantini (байкальская поп.)	д.о.	д.о.	д.о.	1,83 σ = 0,43 n = 20	д.о.
A. profundus tomilovi (байкальская поп.)	д.о.	д.о.	д.о.	3,18 σ = 0,28 n = 12	д.о.
A. elegans (байкальская поп.)	д.о.	д.о.	д.о.	1,3 σ = 0,25 n = 28	д.о.
<i>C. bicolor</i> (байкальская поп.)	д.о.	д.о.	1,68 n = 1	1,28 σ = 0,23 n = 14	д.о.


Размеры до- и пост- диминуционных геномов ранее неизученных видов циклопов (пг)

M. leuckarti (байкальская поп.)	1,09 ±0,18 0,89 ±0,17
E. serrulatus baicalocorrepus (байкальская поп.)	- 1,71 ±0,24
D. eulitoralis (байкальская поп.)	- 0,84 ±0,28
A. profundus tomilovi (байкальская поп.)	- 1,59 ±0,14
A. vernalis (новосибирская поп.)	- 0,96 ±0,22
A. konstantini (байкальская поп.)	- 0,91 ±0,21
A. elegans (байкальская поп.)	- 0,65 ±0,12
C. bicolor (байкальская поп.)	- 0,64 ±0,11


Количество ДНК в ядрах клеток ранее неизученных видов циклопов (пг)

Вид циклопа					нуционное итие	Элиминируе мая ДНК, %
(популяция)	Анафаза	Метафаза	Интерфаза	Поздние	Ноги, имаго	
	A, 2C	M, 4C		эмбрионы,	2C	
				2C		
A. incolotaenia	45,0	98,5		2,5	1,92	
(байкальская поп.)	δ=3,6	δ=10,4	д.о.	δ=0,30	δ=0,29	94,5-96,1%
	n=8	n=20		n=60	n=27	
Diacyclops sp			8,77	0,91	0,94	Не менее
(байкальская поп.)	д.о.	д.о.	δ=1,13	n=2	δ=0,15	57,1-58,5%
			n=13		n=24	

Диминуция хроматина у байкальского вида *A. incolotaenia*

22,49±1,81 — **24,63**±2,60 пг

1,16±0,20 пг

94,5-96,1%

Диминуция хроматина у байкальского вида Diacyclops sp.

Интерфаза 32 клетки Размер постдиминуционного генома % элиминируемой ДНК

8,77±0,09

0,47±0,003

Не менее 57,1%

Стадия прохождения диминуции не установлена

Выводы

- Отработан модифицированный метод оценки количества ДНК в ядрах, окрашенных по Фёльгену с применением цифровой микрофотографии.
- Получена оценка абсолютных значений размеров геномов до и после диминуции хроматина для байкальской и московской популяций вида *Cyclops kolensis* и московской популяции вида *Cyclops insignis*. Установлено, что в ходе диминуции хроматина у вида *Cyclops kolensis* элиминируется 95-96% ДНК, и диминуция хроматина у вида *Cyclops insignis* отсутствует.
- Определены размеры постдиминуционных геномов для видов:
 E. serrulatus baicalocorrepus 1,71±0,24 пг, D. eulitoralis 0,84±0,28 пг,
 A. konstantini 0,91±0,21 пг, A. elegans 0,65±0,12 пг, A. profundus tomilovi 1,59±0,14 пг, C. bicolor 0,64±0,11 пг, A. vernalis 0,96±0,22 пг.

Выводы

- Установлено, что у байкальского вида *M. leuckarti* диминуция хроматина отсутствует, и размер генома составляет 0,96±0,20 пг.
- Впервые установлено наличие диминуции хроматина у байкальских видов *A. incolotaenia* и *Diacyclops. sp.* Получены оценки размеров до- и пост- диминуционных геномов для вида *A. incolotaenia*. Для *Diacyclops. sp.* установлен размер постдиминуционного генома, и получена оценка уровня диминуции не менее 57%.

Публикации

- Омельянчук Л.В., Семешин В.Ф., <u>Алексеева А.Л.</u>, Пальчикова И.Г., Жимулев И.Ф. Интегральный метод измерения количества ДНК в клетке, с использованием цифровой микрофотографии // Цитология. 2010. Т. 54. Вып. 4. С. 349-353.
- Семешин В.Ф., Омельянчук Л.В., <u>Алексеева А.Л.</u>, Иванкина Е.А., Шевелева Н.Г., Жимулев И.Ф. Содержание ДНК в ядрах *Cyclops kolensis* и *C. insignis* (Crustacea, Copepoda) // Цитология. 2011. Т. 53. Вып. 3. С. 77-81.

Автор выражает благодарность

- академику РАН Игорю Федоровичу Жимулеву
- д.б.н. Валерию Федоровичу Семешину
- д.б.н. Леониду Владимировичу Омельянчуку
- д.б.н. Аксенович Татьяне Иосифовне

Автор также благодарит за помощь в сборе материала и обсуждение работы

д.б.н. Людмилу Васильевну Высоцкую

ОМКБ ИХБФМ СО РАН	ИОГен РАН	ЛИН СО РАН	КТИ НП СО РАН	ИЦиГ СО РАН
Гончарова Ф.П. Гусельникова С.В. Иванкину Е.А. Иванкина А.В.	•	Кирильчика С.В. Купчинского А.Б. Ханаева И.В. Шевелёву Н.Г.	•	Васильеву Л.А.